FittsLaw/Assets/GoogleVR/Scripts/Controller/ArmModel/GvrArmModel.cs

433 lines
17 KiB
C#
Raw Normal View History

2018-10-08 23:54:11 -04:00
// Copyright 2016 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
using UnityEngine;
using System.Collections;
/// Standard implementation for a mathematical model to make the virtual controller approximate the
/// physical location of the Daydream controller.
[HelpURL("https://developers.google.com/vr/unity/reference/class/GvrArmModel")]
public class GvrArmModel : GvrBaseArmModel, IGvrControllerInputDeviceReceiver {
/// Position of the elbow joint relative to the head before the arm model is applied.
public Vector3 elbowRestPosition = DEFAULT_ELBOW_REST_POSITION;
/// Position of the wrist joint relative to the elbow before the arm model is applied.
public Vector3 wristRestPosition = DEFAULT_WRIST_REST_POSITION;
/// Position of the controller joint relative to the wrist before the arm model is applied.
public Vector3 controllerRestPosition = DEFAULT_CONTROLLER_REST_POSITION;
/// Offset applied to the elbow position as the controller is rotated upwards.
public Vector3 armExtensionOffset = DEFAULT_ARM_EXTENSION_OFFSET;
/// Ratio of the controller's rotation to apply to the rotation of the elbow.
/// The remaining rotation is applied to the wrist's rotation.
[Range(0.0f, 1.0f)]
public float elbowBendRatio = DEFAULT_ELBOW_BEND_RATIO;
/// Offset in front of the controller to determine what position to use when determing if the
/// controller should fade. This is useful when objects are attached to the controller.
[Range(0.0f, 0.4f)]
public float fadeControllerOffset = 0.0f;
/// Controller distance from the front/back of the head after which the controller disappears (meters).
[Range(0.0f, 0.4f)]
public float fadeDistanceFromHeadForward = 0.25f;
/// Controller distance from the left/right of the head after which the controller disappears (meters).
[Range(0.0f, 0.4f)]
public float fadeDistanceFromHeadSide = 0.15f;
/// Controller distance from face after which the tooltips appear (meters).
[Range(0.4f, 0.6f)]
public float tooltipMinDistanceFromFace = 0.45f;
/// When the angle (degrees) between the controller and the head is larger than
/// this value, the tooltips disappear.
/// If the value is 180, then the tooltips are always shown.
/// If the value is 90, the tooltips are only shown when they are facing the camera.
[Range(0, 180)]
public int tooltipMaxAngleFromCamera = 80;
/// If true, the root of the pose is locked to the local position of the player's neck.
public bool isLockedToNeck = false;
/// Represents the controller's position relative to the user's head.
public override Vector3 ControllerPositionFromHead {
get {
return controllerPosition;
}
}
/// Represent the controller's rotation relative to the user's head.
public override Quaternion ControllerRotationFromHead {
get {
return controllerRotation;
}
}
/// The suggested rendering alpha value of the controller.
/// This is to prevent the controller from intersecting the face.
/// The range is always 0 - 1.
public override float PreferredAlpha {
get {
return preferredAlpha;
}
}
/// The suggested rendering alpha value of the controller tooltips.
/// This is to only display the tooltips when the player is looking
/// at the controller, and also to prevent the tooltips from intersecting the
/// player's face.
public override float TooltipAlphaValue {
get {
return tooltipAlphaValue;
}
}
/// Represent the neck's position relative to the user's head.
/// If isLockedToNeck is true, this will be the InputTracking position of the Head node modified
/// by an inverse neck model to approximate the neck position.
/// Otherwise, it is always zero.
public Vector3 NeckPosition {
get {
return neckPosition;
}
}
/// Represent the shoulder's position relative to the user's head.
/// This is not actually used as part of the arm model calculations, and exists for debugging.
public Vector3 ShoulderPosition {
get {
Vector3 shoulderPosition = neckPosition + torsoRotation * Vector3.Scale(SHOULDER_POSITION, handedMultiplier);
return shoulderPosition;
}
}
/// Represent the shoulder's rotation relative to the user's head.
/// This is not actually used as part of the arm model calculations, and exists for debugging.
public Quaternion ShoulderRotation {
get {
return torsoRotation;
}
}
/// Represent the elbow's position relative to the user's head.
public Vector3 ElbowPosition {
get {
return elbowPosition;
}
}
/// Represent the elbow's rotation relative to the user's head.
public Quaternion ElbowRotation {
get {
return elbowRotation;
}
}
/// Represent the wrist's position relative to the user's head.
public Vector3 WristPosition {
get {
return wristPosition;
}
}
/// Represent the wrist's rotation relative to the user's head.
public Quaternion WristRotation {
get {
return wristRotation;
}
}
public GvrControllerInputDevice ControllerInputDevice { get; set; }
protected Vector3 neckPosition;
protected Vector3 elbowPosition;
protected Quaternion elbowRotation;
protected Vector3 wristPosition;
protected Quaternion wristRotation;
protected Vector3 controllerPosition;
protected Quaternion controllerRotation;
protected float preferredAlpha;
protected float tooltipAlphaValue;
/// Multiplier for handedness such that 1 = Right, 0 = Center, -1 = left.
protected Vector3 handedMultiplier;
/// Forward direction of user's torso.
protected Vector3 torsoDirection;
/// Orientation of the user's torso.
protected Quaternion torsoRotation;
// Default values for tuning variables.
public static readonly Vector3 DEFAULT_ELBOW_REST_POSITION = new Vector3(0.195f, -0.5f, 0.005f);
public static readonly Vector3 DEFAULT_WRIST_REST_POSITION = new Vector3(0.0f, 0.0f, 0.25f);
public static readonly Vector3 DEFAULT_CONTROLLER_REST_POSITION = new Vector3(0.0f, 0.0f, 0.05f);
public static readonly Vector3 DEFAULT_ARM_EXTENSION_OFFSET = new Vector3(-0.13f, 0.14f, 0.08f);
public const float DEFAULT_ELBOW_BEND_RATIO = 0.6f;
/// Increases elbow bending as the controller moves up (unitless).
protected const float EXTENSION_WEIGHT = 0.4f;
/// Rest position for shoulder joint.
protected static readonly Vector3 SHOULDER_POSITION = new Vector3(0.17f, -0.2f, -0.03f);
/// Neck offset used to apply the inverse neck model when locked to the head.
protected static readonly Vector3 NECK_OFFSET = new Vector3(0.0f, 0.075f, 0.08f);
/// Amount of normalized alpha transparency to change per second.
protected const float DELTA_ALPHA = 4.0f;
/// Angle ranges the for arm extension offset to start and end (degrees).
protected const float MIN_EXTENSION_ANGLE = 7.0f;
protected const float MAX_EXTENSION_ANGLE = 60.0f;
protected virtual void OnEnable() {
// Register the controller update listener.
GvrControllerInput.OnControllerInputUpdated += OnControllerInputUpdated;
// Force the torso direction to match the gaze direction immediately.
// Otherwise, the controller will not be positioned correctly if the ArmModel was enabled
// when the user wasn't facing forward.
UpdateTorsoDirection(true);
// Update immediately to avoid a frame delay before the arm model is applied.
OnControllerInputUpdated();
}
protected virtual void OnDisable() {
GvrControllerInput.OnControllerInputUpdated -= OnControllerInputUpdated;
}
protected virtual void OnControllerInputUpdated() {
UpdateHandedness();
UpdateTorsoDirection(false);
UpdateNeckPosition();
ApplyArmModel();
UpdateTransparency();
}
protected virtual void UpdateHandedness() {
// Update user handedness if the setting has changed.
if (ControllerInputDevice == null) {
return;
}
// Determine handedness multiplier.
handedMultiplier.Set(0, 1, 1);
if (ControllerInputDevice.IsRightHand) {
handedMultiplier.x = 1.0f;
} else {
handedMultiplier.x = -1.0f;
}
}
protected virtual void UpdateTorsoDirection(bool forceImmediate) {
// Determine the gaze direction horizontally.
Vector3 gazeDirection = GvrVRHelpers.GetHeadForward();
gazeDirection.y = 0.0f;
gazeDirection.Normalize();
// Use the gaze direction to update the forward direction.
if (forceImmediate ||
(ControllerInputDevice != null && ControllerInputDevice.Recentered)) {
torsoDirection = gazeDirection;
} else {
float angularVelocity = ControllerInputDevice != null ? ControllerInputDevice.Gyro.magnitude : 0;
float gazeFilterStrength = Mathf.Clamp((angularVelocity - 0.2f) / 45.0f, 0.0f, 0.1f);
torsoDirection = Vector3.Slerp(torsoDirection, gazeDirection, gazeFilterStrength);
}
// Calculate the torso rotation.
torsoRotation = Quaternion.FromToRotation(Vector3.forward, torsoDirection);
}
protected virtual void UpdateNeckPosition() {
if (isLockedToNeck) {
// Returns the center of the eyes.
// However, we actually want to lock to the center of the head.
neckPosition = GvrVRHelpers.GetHeadPosition();
// Find the approximate neck position by Applying an inverse neck model.
// This transforms the head position to the center of the head and also accounts
// for the head's rotation so that the motion feels more natural.
neckPosition = ApplyInverseNeckModel(neckPosition);
} else {
neckPosition = Vector3.zero;
}
}
protected virtual void ApplyArmModel() {
// Set the starting positions of the joints before they are transformed by the arm model.
SetUntransformedJointPositions();
// Get the controller's orientation.
Quaternion controllerOrientation;
Quaternion xyRotation;
float xAngle;
GetControllerRotation(out controllerOrientation, out xyRotation, out xAngle);
// Offset the elbow by the extension offset.
float extensionRatio = CalculateExtensionRatio(xAngle);
ApplyExtensionOffset(extensionRatio);
// Calculate the lerp rotation, which is used to control how much the rotation of the
// controller impacts each joint.
Quaternion lerpRotation = CalculateLerpRotation(xyRotation, extensionRatio);
CalculateFinalJointRotations(controllerOrientation, xyRotation, lerpRotation);
ApplyRotationToJoints();
}
/// Set the starting positions of the joints before they are transformed by the arm model.
protected virtual void SetUntransformedJointPositions() {
elbowPosition = Vector3.Scale(elbowRestPosition, handedMultiplier);
wristPosition = Vector3.Scale(wristRestPosition, handedMultiplier);
controllerPosition = Vector3.Scale(controllerRestPosition, handedMultiplier);
}
/// Calculate the extension ratio based on the angle of the controller along the x axis.
protected virtual float CalculateExtensionRatio(float xAngle) {
float normalizedAngle = (xAngle - MIN_EXTENSION_ANGLE) / (MAX_EXTENSION_ANGLE - MIN_EXTENSION_ANGLE);
float extensionRatio = Mathf.Clamp(normalizedAngle, 0.0f, 1.0f);
return extensionRatio;
}
/// Offset the elbow by the extension offset.
protected virtual void ApplyExtensionOffset(float extensionRatio) {
Vector3 extensionOffset = Vector3.Scale(armExtensionOffset, handedMultiplier);
elbowPosition += extensionOffset * extensionRatio;
}
/// Calculate the lerp rotation, which is used to control how much the rotation of the
/// controller impacts each joint.
protected virtual Quaternion CalculateLerpRotation(Quaternion xyRotation, float extensionRatio) {
float totalAngle = Quaternion.Angle(xyRotation, Quaternion.identity);
float lerpSuppresion = 1.0f - Mathf.Pow(totalAngle / 180.0f, 6.0f);
float inverseElbowBendRatio = 1.0f - elbowBendRatio;
float lerpValue = inverseElbowBendRatio + elbowBendRatio * extensionRatio * EXTENSION_WEIGHT;
lerpValue *= lerpSuppresion;
return Quaternion.Lerp(Quaternion.identity, xyRotation, lerpValue);
}
/// Determine the final joint rotations relative to the head.
protected virtual void CalculateFinalJointRotations(Quaternion controllerOrientation, Quaternion xyRotation, Quaternion lerpRotation) {
elbowRotation = torsoRotation * Quaternion.Inverse(lerpRotation) * xyRotation;
wristRotation = elbowRotation * lerpRotation;
controllerRotation = torsoRotation * controllerOrientation;
}
/// Apply the joint rotations to the positions of the joints to determine the final pose.
protected virtual void ApplyRotationToJoints() {
elbowPosition = neckPosition + torsoRotation * elbowPosition;
wristPosition = elbowPosition + elbowRotation * wristPosition;
controllerPosition = wristPosition + wristRotation * controllerPosition;
}
/// Transform the head position into an approximate neck position.
protected virtual Vector3 ApplyInverseNeckModel(Vector3 headPosition) {
Quaternion headRotation = GvrVRHelpers.GetHeadRotation();
Vector3 rotatedNeckOffset =
headRotation * NECK_OFFSET - NECK_OFFSET.y * Vector3.up;
headPosition -= rotatedNeckOffset;
return headPosition;
}
/// Controls the transparency of the controller to prevent the controller from clipping through
/// the user's head. Also, controls the transparency of the tooltips so they are only visible
/// when the controller is held up.
protected virtual void UpdateTransparency() {
Vector3 controllerForward = controllerRotation * Vector3.forward;
Vector3 offsetControllerPosition = controllerPosition + (controllerForward * fadeControllerOffset);
Vector3 controllerRelativeToHead = offsetControllerPosition - neckPosition;
Vector3 headForward = GvrVRHelpers.GetHeadForward();
float distanceToHeadForward = Vector3.Scale(controllerRelativeToHead, headForward).magnitude;
Vector3 headRight = Vector3.Cross(headForward, Vector3.up);
float distanceToHeadSide = Vector3.Scale(controllerRelativeToHead, headRight).magnitude;
float distanceToHeadUp = Mathf.Abs(controllerRelativeToHead.y);
bool shouldFadeController = distanceToHeadForward < fadeDistanceFromHeadForward
&& distanceToHeadUp < fadeDistanceFromHeadForward
&& distanceToHeadSide < fadeDistanceFromHeadSide;
// Determine how vertical the controller is pointing.
float animationDelta = DELTA_ALPHA * Time.unscaledDeltaTime;
if (shouldFadeController) {
preferredAlpha = Mathf.Max(0.0f, preferredAlpha - animationDelta);
} else {
preferredAlpha = Mathf.Min(1.0f, preferredAlpha + animationDelta);
}
float dot = Vector3.Dot(controllerRotation * Vector3.up, -controllerRelativeToHead.normalized);
float minDot = (tooltipMaxAngleFromCamera - 90.0f) / -90.0f;
float distToFace = Vector3.Distance(controllerRelativeToHead, Vector3.zero);
if (shouldFadeController
|| distToFace > tooltipMinDistanceFromFace
|| dot < minDot) {
tooltipAlphaValue = Mathf.Max(0.0f, tooltipAlphaValue - animationDelta);
} else {
tooltipAlphaValue = Mathf.Min(1.0f, tooltipAlphaValue + animationDelta);
}
}
/// Get the controller's orientation.
protected void GetControllerRotation(out Quaternion rotation, out Quaternion xyRotation, out float xAngle) {
// Find the controller's orientation relative to the player.
rotation = ControllerInputDevice != null ? ControllerInputDevice.Orientation : Quaternion.identity;
rotation = Quaternion.Inverse(torsoRotation) * rotation;
// Extract just the x rotation angle.
Vector3 controllerForward = rotation * Vector3.forward;
xAngle = 90.0f - Vector3.Angle(controllerForward, Vector3.up);
// Remove the z rotation from the controller.
xyRotation = Quaternion.FromToRotation(Vector3.forward, controllerForward);
}
#if UNITY_EDITOR
protected virtual void OnDrawGizmosSelected() {
if (!enabled) {
return;
}
if (transform.parent == null) {
return;
}
Vector3 worldShoulder = transform.parent.TransformPoint(ShoulderPosition);
Vector3 worldElbow = transform.parent.TransformPoint(elbowPosition);
Vector3 worldwrist = transform.parent.TransformPoint(wristPosition);
Vector3 worldcontroller = transform.parent.TransformPoint(controllerPosition);
Gizmos.color = Color.red;
Gizmos.DrawSphere(worldShoulder, 0.02f);
Gizmos.DrawLine(worldShoulder, worldElbow);
Gizmos.color = Color.green;
Gizmos.DrawSphere(worldElbow, 0.02f);
Gizmos.DrawLine(worldElbow, worldwrist);
Gizmos.color = Color.cyan;
Gizmos.DrawSphere(worldwrist, 0.02f);
Gizmos.color = Color.blue;
Gizmos.DrawSphere(worldcontroller, 0.02f);
}
#endif // UNITY_EDITOR
}